skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Jia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Oxygen-containing complex organic molecules are key precursors to biorelevant compounds fundamental for the origins of life. However, the untangling of their interstellar formation mechanisms has just scratched the surface, especially for oxygen-containing cyclic molecules. Here, we present the first laboratory simulation experiments featuring the formation of all three C2H4O isomers—ethylene oxide (c–C2H4O), acetaldehyde (CH3CHO), and vinyl alcohol (CH2CHOH)—in low-temperature model interstellar ices composed of carbon monoxide (CO) and ethanol (C2H5OH). Ice mixtures were exposed to galactic cosmic-ray proxies with an irradiation dose equivalent to a cold molecular cloud aged (7 ± 2) × 105yr. These biorelevant species were detected in the gas phase through isomer-selective photoionization reflectron time-of-flight mass spectrometry during temperature-programmed desorption. Isotopic labeling experiments reveal that ethylene oxide is produced from ethanol alone, providing the first experimental evidence to support the hypothesis that ethanol serves as a precursor to the prototype epoxide in interstellar ices. These findings reveal feasible pathways for the formation of all three C2H4O isomers in ethanol-rich interstellar ices, offering valuable constraints on astrochemical models for their formation. Our results suggest that ethanol is a critical precursor to C2H4O isomers in interstellar environments, representing a critical step toward unraveling the formation mechanisms of oxygen-containing cyclic molecules, aldehydes, and their enol tautomers from alcohols in interstellar ices. 
    more » « less
    Free, publicly-accessible full text available May 6, 2026
  2. Abstract Lake surface temperature extremes have shifted over recent decades, leading to significant ecological and economic impacts. Here, we employed a hydrodynamic-ice model, driven by climate data, to reconstruct over 80 years of lake surface temperature data across the world’s largest freshwater bodies. We analyzed lake surface temperature extremes by examining changes in the 10th and 90th percentiles of the detrended lake surface temperature distribution, alongside heatwaves and cold-spells. Our findings reveal a 20–60% increase in the 10 and 90 percentiles detrended lake surface temperature in the last 50 years relative to the first 30 years. Heatwave and cold-spell intensities, measured via annual degree days, showed strong coherence with the Arctic Oscillation (period: 2.5 years), Southern Oscillation Index (4 years), and Pacific Decadal Oscillation (6.5 years), indicating significant links between lake surface temperature extremes and both interannual and decadal climate teleconnections. Notably, heatwave and cold-spell intensities for all lakes surged by over 100% after 1996 or 1976, aligning with the strongest El-Niño and a major shift in the Pacific Decadal Oscillation, respectively, marking potential regional climate tipping points. This emphasizes the long-lasting impacts of climate change on large lake thermodynamics, which cascade through larger ecological and regional climate systems. 
    more » « less
  3. Urban heat mitigation is a pressing concern for cities. Intense urban heat poses a threat to human health and urban sustainability. Tree planting is one of the most widely employed nature-based heat mitigation methods worldwide. Therefore, city policy makers require knowledge of how much temperature will be reduced by increasing urban tree canopy (UTC). Cooling efficiency (CE), which was been proposed to quantify the magnitude of temperature reduction associated with a 1% increase in UTC, has been primarily investigated at smaller scales previously. However, such small-scale results cannot be used to develop policy at the whole-city scale. This study developed a method that reveals the scaling relations of CE so as to predict its effects at the city scale. CE was found to follow the form of a power law as spatial scale increased from the small analytical units through intermediate size units up to the extent of a whole city. The power law form appeared consistently across cities with different climate backgrounds during summer daylight hours. Furthermore, the power law form was robust within cities under different summer weather conditions. The power-law scaling approach can thus be used to predict CE at the whole-city scale, providing a useful tool for managers to set UTC goals to mitigate extreme urban heat. 
    more » « less
  4. Blaser, Martin J (Ed.)
    ABSTRACT Haemophilus ducreyicauses the genital ulcer disease chancroid and cutaneous ulcers in children. To study its pathogenesis, we developed a human challenge model in which we infect the skin on the upper arm of human volunteers withH. ducreyito the pustular stage of disease. The model has been used to define lesional architecture, describe the immune infiltrate into the infected sites using flow cytometry, and explore the molecular basis of the immune response using bulk RNA-seq. Here, we used single cell RNA-seq (scRNA-seq) and spatial transcriptomics to simultaneously characterize multiple cell types within infected human skin and determine the cellular origin of differentially expressed transcripts that we had previously identified by bulk RNA-seq. We obtained paired biopsies of pustules and wounded (mock infected) sites from five volunteers for scRNA-seq. We identified 13 major cell types, including T- and NK-like cells, macrophages, dendritic cells, as well as other cell types typically found in the skin. Immune cell types were enriched in pustules, and some subtypes within the major cell types were exclusive to pustules. Sufficient tissue specimens for spatial transcriptomics were available from four of the volunteers. T- and NK-like cells were highly associated with multiple antigen presentation cell types. In pustules, type I interferon stimulation was high in areas that were high in antigen presentation—especially in macrophages near the abscess—compared to wounds. Together, our data provide a high-resolution view of the cellular immune response to the infection of the skin with a human pathogen.IMPORTANCEA high-resolution view of the immune infiltrate due to infection with an extracellular bacterial pathogen in human skin has not yet been defined. Here, we used the human skin pathogenHaemophilus ducreyiin a human challenge model to identify on a single cell level the types of cells that are present in volunteers who fail to spontaneously clear infection and form pustules. We identified 13 major cell types. Immune cells and immune-activated stromal cells were enriched in pustules compared to wounded (mock infected) sites. Pustules formed despite the expression of multiple pro-inflammatory cytokines, such as IL-1β and type I interferon. Interferon stimulation was most evident in macrophages, which were proximal to the abscess. The pro-inflammatory response within the pustule may be tempered by regulatory T cells and cells that express indoleamine 2,3-dioxygenase, leading to failure of the immune system to clearH. ducreyi. 
    more » « less
    Free, publicly-accessible full text available March 12, 2026
  5. Abstract Aldehydes are ubiquitous in star-forming regions and carbonaceous chondrites, serving as essential intermediates in metabolic pathways and molecular mass growth processes to vital biomolecules necessary for the origins of life. However, their interstellar formation mechanisms have remained largely elusive. Here, we unveil the formation of lactaldehyde (CH3CH(OH)CHO) by barrierless recombination of formyl (HĊO) and 1-hydroxyethyl (CH3ĊHOH) radicals in interstellar ice analogs composed of carbon monoxide (CO) and ethanol (CH3CH2OH). Lactaldehyde and its isomers 3-hydroxypropanal (HOCH2CH2CHO), ethyl formate (CH3CH2OCHO), and 1,3-propenediol (HOCH2CHCHOH) are identified in the gas phase utilizing isomer-selective photoionization reflectron time-of-flight mass spectrometry and isotopic substitution studies. These findings reveal fundamental formation pathways for complex, biologically relevant aldehydes through non-equilibrium reactions in interstellar environments. Once synthesized, lactaldehyde can act as a key precursor to critical biomolecules such as sugars, sugar acids, and amino acids in deep space. 
    more » « less
  6. Free, publicly-accessible full text available June 10, 2026
  7. Abstract Two-dimensional (2D) ferroelectric and magnetic van der Waals materials are emerging platforms for the discovery of novel cooperative quantum phenomena and development of energy-efficient logic and memory applications as well as neuromorphic and topological computing. This review presents a comprehensive survey of the rapidly growing 2D ferroic family from the synthesis perspective, including brief introductions to the top-down and bottom-up approaches for fabricating 2D ferroic flakes, thin films, and heterostructures as well as the important characterization techniques for assessing the sample properties. We also discuss the key challenges and future directions in the field, including scalable growth, property control, sample stability, and integration with other functional materials. 
    more » « less
  8. Abstract Extreme water temperatures impact the ecological and economic value of freshwater systems. They disrupt fisheries habitat, trigger harmful algal blooms, and stress coastal infrastructure. This study examines the spatiotemporal patterns of heatwaves and cold‐spells in the Great Lakes using 82 years of simulated surface temperature data. Significant increasing trends in heatwave duration were observed in Lake Superior and Lake Michigan‐Huron, while cold‐spell duration increased on all lakes except Ontario. Temperature anomalies during these events varied from the climatological mean by as much as ±10C, but did not change significantly over time. Analysis revealed substantial spatial variability in heatwaves and cold‐spells, both within and across lakes, with differences driven by air temperature and ice cover anomalies as well as associated climate teleconnections (i.e., the East Pacific/North Pacific and Atlantic Multidecadal Oscillation). These findings highlight the importance of both climatic and lake processes in shaping extreme temperature events. 
    more » « less
    Free, publicly-accessible full text available July 28, 2026